Reverse Stark effect, anomalous optical transitions, and control of spin in topological insulator quantum dots

نویسندگان

  • Hongya Xu
  • Ying-Cheng Lai
چکیده

Formed through a closed domain magnetic heterostructure on the surface of a three-dimensional topological insulator, a quantum dot permits a class of quantized interfacial states of topological origin. We find that these states exhibit a remarkable reverse Stark effect in response to an applied electric field. In particular, those topological states whose energies are within the gap exhibit peculiar electrical alignments that are opposite to those associated with the conventional quantum-confined Stark effect in that the positive(negative-) energy states tend to align with (against) the direction of the field. The phenomenon has unusual implications for the associated optical transitions. Furthermore, the exotic topological states exhibit polarized spin textures that can be effectively controlled electrically or optically, opening an avenue for potential applications in Dirac-material-based spintronics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomalous Hall response in two-dimensional topological insulators due to the Stark effect

It is shown that the presence of matrix dipole moments induced by external electric fields can modify the Hall response in two-dimensional topological insulators. In the case of the quantum anomalous Hall effect the induced transverse currents acquire an extra term, being proportional to the Hall conductance and the time derivative of the applied electric field. In the case of the quantum spin ...

متن کامل

AFRL-AFOSR-VA-TR-2017-0049 Superpersistent Currents in Dirac Fermion Systems

The principal Objective of the project was to uncover, understand, and exploit persistent currents in 2D Dirac material systems and pertinent phenomena in the emerging field of relativistic quantum nonlinear dynamics and chaos. Systematic theories and methods were developed to analyze and characterize persistent currents in these systems and their unusual physical properties. The main accomplis...

متن کامل

Quantum anomalous Hall effect with higher plateaus.

The quantum anomalous Hall (QAH) effect in magnetic topological insulators is driven by the combination of spontaneous magnetic moments and spin-orbit coupling. Its recent experimental discovery raises the question if higher plateaus can also be realized. Here, we present a general theory for a QAH effect with higher Chern numbers and show by first-principles calculations that a thin film magne...

متن کامل

Topological spin texture in a quantum anomalous Hall insulator.

The quantum anomalous Hall (QAH) effect has been recently discovered in an experiment using a thin-film topological insulator with ferromagnetic ordering and strong spin-orbit coupling. Here we investigate the spin degree of freedom of a QAH insulator and uncover the fundamental phenomenon that the edge states exhibit a topologically stable spin texture in the boundary when a chiral-like symmet...

متن کامل

Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase

Phase transitions between the quantum spin Hall and the insulator phases in three dimensions are studied. We find that in inversion-asymmetric systems there appears a gapless phase between the quantum spin Hall and insulator phases in three dimensions, which is in contrast with the two-dimensional case. Existence of this gapless phase stems from a topological nature of gapless points (diabolica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015